skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pruthi, Danish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Watermarking involves implanting an imperceptible signal into generated text that can later be detected via statistical tests. A prominent family of watermarking strategies for LLMs embeds this signal by upsampling a (pseudorandomly-chosen) subset of tokens at every generation step. However, such signals alter the model’s output distribution and can have unintended effects on its downstream performance. In this work, we evaluate the performance of LLMs watermarked using three different strategies over a diverse suite of tasks including those cast as k-class classification (CLS), multiple choice question answering (MCQ), short-form generation (e.g., open-ended question answering) and long-form generation (e.g., translation) tasks. We find that watermarks (under realistic hyperparameters) can cause significant drops in LLMs’ effective utility across all tasks. We observe drops of 10 to 20% in CLS tasks in the average case, which shoot up to 100% in the worst case. We notice degradations of about 7% in MCQ tasks, 10-15% in short-form generation, and 5-15% in long-form generation tasks. Our findings highlight the trade-offs that users should be cognizant of when using watermarked models. 
    more » « less